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A general  formula  is derived for  the radiation flux impinging on the surface of the bed. The 
problem of se l f - radia t ion of a non-thick nonisothermal bed is solved, as well as the problem 
of se l f - radia t ion  of a semi-infini te  medium whose t empera tu re  remains  constant everywhere  
except for  a non-thick boundary layer .  

1. We consider  the problem of radiative heat t r ans f e r  in a planar bed (layer) of an absorbing and 
sca t te r ing  medium. The tempera tu re  field in the medium wilt be assumed known. We assume that the ef-  
fective radiat ion f rom the surfaces  bounding the bed is hemispher ical ,  and that the t empera tu re  var ies  along 
the axis perpendicular  to the surface  layers .  We assume the medium and walls gray, since otherwise the 
problem would become complicated as we attempt to integrate over  the entire wavelength spect rum.  The 
problem as posed has been solved [1] by the Eddin~on  method. [n some cases ,  the accuracy  of the resul ts  
repor ted  there  [1] is judged inadequate. For  example, the emiss iv i ty  fac tor  of a semi-infini te  nonscat ter ing 
laver  is repor ted  to be 4 / (2  + ~fi3), instead of the co r r ec t  value ~ = 1. 

Since the effective radiation f rom surfaces  bounding the layer  is hemispherical ,  we can r e so r t  to a 
method s imi la r  to the ,one advanced by O. E. Vlasov [2], in order  to find the radiation flux. In the case of 
radiat ion flux impinging on the surface ~- = 0 on the side of the process  medium, we have 

q (0) .... % (0) ~- [Gq (%) q- q~] D + [q (0) q + q~] R, 

and fo r rad ia t ionf lux imping ingon thesecondbound ingp lane  7 = ~'0 f rom the side of the process  medium, we 
have 

q (%)i = qh ('%) + [q (0) q -k q,l D -k [q (%) G -b q21 R. 

These equations give the law of energy conservation in this application. Solving them jointly, we have 

q(O) = (1 --  GR) [q~(O) + q2O + q~R] 4- GD [qh (%) + q~D + q2R] 
(1 - -  r ~ R )  (1 - -  GR) - -  D2qr2 (1) 

The flux of radiat ion impinging on the v = T 0 surface  is found f rom Eq. (1) by interchanging subscr ip ts  1 ~ 2 
and 0 ~- %. In the case where qh(0) = qh(%), Eq. (1) goes over  into a more  famil iar  equation [3]. When q(0) 
and q(%) a re  known, the problem of radiative heat t r ans f e r  in the plane laver  becomes completely solvable. 
There  is a considerable body of l i terature  devoted to calculations of the var iables  R and D. An approximate 
solution of the problem of the flux of se l f - radia t ion  of the layer  is presented below. 

2. The radiative t r ans fe r  equation for  intensity I integrated over the azimuthal  angle is written, for  
a plane bed, in the fo rm [5] 

! 

2! . .  + , ,  = + (2) P" 0'~ 

The function j is expressed  in t e r m s  of the t empera tu re  of the surroundings as follows: 

] ('Q = 2 (1 - -  ~) r ~ ('Q. (3) 

Since we are  requi red  to find the flux of se l f - rad ia t ion  of the bed, the boundary conditions for  Eq. (2) are  
zero  conditions: 
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TABLE 1. Ratio of Luminosi ty  of L a y e r  to oT~ 

0 
0,2 
0,4 
0,6 

qh(O)/aTg 

8,36 
7,35 
6,19 
4,66 

o;~2 

qh ( I )lOT 4 

4,89 
4,68 
4,30 
3,57 

q~/oT4 0 

8,58 
7,65 
6,59 
5,18 

e(D ~(~) 

0,781 1,000 
0,711 0,958 
0,617 0,890 
0,486 0,799 

(Z=0,5 

qh(O)/6T4 c5 4 qh(IL T O [ q~/aT4 

0,305 0 ,522  0,525 
0,294 0 ,460  0,538 
0,268 0 ,385  0,536 
0,223 0,291 0,523 

I(0, ~ > 0 ) = 0 ;  I(T o, I ~ < 0 ) = 0 ,  
L 

where % = S Kdx is  the optical  th ickness  of the l aye r .  
0 

Once the intensi ty  is known, the re  is l i t t le difficulty in finding the se l f - r ad ia t ion  flux of the layer  
1 

qh (~o) ~ ,I~ tl (To, ~) d~, 
0 

(4) 

(5) 
0 

(0) = - -  ( ~tI (0, ~) d~.  qh 
--1 

The intensi ty of radia t ion f r o m  an e lementa l  volume of the heated med ium is  propor t iona l  to the ab-  
sorp t iv i ty .  The c l o s e r  the e lementa l  volume is located to the boundary of the medium,  the g r e a t e r  the p o r -  
t ion of its radia t ion that will find its way outside.  But sca t t e r ing  need not be taken into account at smal l  
optical  t h i cknesses .  Consequently,  we need not take sca t t e r ing  into account e i the r  in p rob lems  dealing with 
s e l f - r ad i a t i on  of the med ium when the optical  th icknesses  of the med ium a re  not too great ,  and instead we 
can cons ider  only the absorp t ion  of the radiat ion.  Neglecting sca t t e r ing  as a fac tor  is of course  equivalent 
to a s suming  the sca t t e r ing  indicat r ix  to be infinitely extended in the fo rward  direct ion.  Accordingly,  the 
m o r e  the sca t t e r ing  indicatr ix  is extended forward ,  the m o r e  accura te  such an approximat ion  would be. 
The radia t ive  t r a n s f e r  equation in that approx imat ion  becomes  

a[ (6) ~ - - +  (1 --N) I = ](T). 

The solution of this equation, with the boundary conditions (4), appea r s  in the f o r m  

l('~, t~>O)-= ~ j(T')exp (1--~,) T dr', 

0 

I(~:, ~ < 0 ) ~ -  
e x p l - -  (1 - -  E) + 1  ~ 

Vt I J(~c')exP [(1 - -  ~) ~--1 dT'" 

(7) 

(s) 

F o r  the flux of in t r ins ic  radia t ion f r o m  the l ayer  we have, f r o m  Eq. (5) 
To 

ql~ ('%) .f j (T') E 2 [(1 - -  ~) (T o - -  T')] d'V, 
0 

Ta 

qh (0) = ~j (T') E2 [(1 - -  X) T'] d~'. 
0 

Here  E 2 is  the s e c o n d - o r d e r  in tegra l  exponential  function. The n th -o rde r  in tegra l  exponential  function is 
given by the equation 

! 

0 

If the function j is  a second-degree  polynomial  in T, 
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] (~) = ao + a,~ + az~ ~, (9) 

then we readily obtain, f rom Eqs.  (8), 

where 

ao al a2 C (y), 

ao a, [~A (~) - B (y)l + ( ] ~ ) ~  i f  A (u) - 2,jB (v) + c (v)l, qh 0:,,) = V - ~  A (y) + (i - -  )~)~ - - 

(10) 

(1t) 

1 
v = ( 1 - - x ) T 0 ;  A(V) ...... ~ - - & ( v ) ;  

1 (12)  
B (y) - T - -  yE~ (y) - -  & (y); 

1 
C (V) -= T - -  y2E3 (y) - -  2gE4 (g) - -  2E5 (V). 

If the layer  produces no scattering,  then the solution will be an exact one. 

For  the emiss iv i ty  fac tor  of the i so thermal  layer  in this approximation, we find 

-- 1 - -  2E3 [(1 - -  ~,) %]. (13) 

Compar ison of resul ts  based on this formula  and m o r e  exact  data for a spherical  scat ter ing indieatrix [4, 
6] show sa t i s fac tory  accuracy  at % ~ 1.5. 

3. We consider  now the radiation f rom a semi-itffinite medium bounded by the r = 0 plane. We shall 
assume that the tempera ture  of the semi- inf ini te  medium is constant everywhere,  except fo r  the boundary 
layer,  the optical thickness 7" of which is not high. When calculating the flux of intr insic radiat ion f rom 
the boundary layer,  we may- ignore scat ter ing,  on the basis  of the above. To calculate the flux of intr insic  
radiat ion f rom the semi-infini te  layer,  the medium beyond the boundary layer  is replaced by an equivalent 
surface  of ref leet ivi ty R~ and by a flux of intr insic  radiation q~*. We assume,  in an approximation,  that both 
the radiat ion impinging on that surface and the effective radiat ion f rom the equivalent surface a re  hemi-  
spher ica l .  In that case we obtain, for  the flux of in t r ins ic  radiation f rom the semi-infini te  medium, and 
using Eq. (1), 

q~ = q* (0) -[- D (~*) q~' + Rr q* (~*) (14) 
1 - -  R . , R  ( r  ' 

where q*(0) is the flux of in t r ins ic  radiat ion f rom the boundary layer  on the boundary of the medium f = 0; 
q*(r*) is the flux of in t r ins ic  radiat ion f rom the boundary layer  on the bo~mdary of the medium r*. The data 
for  the ref lect ivi ty R:o of the semi- inf ini te  medium can be found in [71 for  a spher ical  sca t ter ing indicatrix 
and for  the s implest  sca t ter ing indicatr ix extended in the forward direction.  More complete data relevant  
to a spher ical  scat ter ing indicatrix are  found in [4]. A check reveals  excellent agreement  between Eq. (14) 
for  an i so thermal  semi-infini te  layer  with a spher ica l  sca t ter ing indicatrix.  

The method for  replacing the medium beyond the boundary layer  with an equivalent sur face  was e m -  
ployed in [8]. 

4. Consider  an i l lustrat ive example of calculations based on the procedure  set forth.  Let 

i = a0 + a~T. (15) 

a 1 = 2 (t --- ~) aT 4- 1 - -  a ~ �9 
T o 

(16) 

We then introduce the notation 

i.e.,  we assume that the tempera ture  of the medium is T 0 on the boundary 7 = %, and that the t empera tu re  
of the medium on the boundary z = 0 is cu t imes  grea te r ,  so that the fourth power of the t empera tu re  is a 
l inear function of the optical depth v. 

Table 1 l ists  the resul ts  of calculations of the rat io of the luminosity of a layer  of optical thickness 
T O = 1 to the product crT0 4 for  different values of the rat io of the sca t te r ing  coefficient to the attentuation 
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coefficient ,  and for  s eve ra l  ~ va lues .  This table  also l is ts  r e su l t s  of ca lcula t ions  of the ra t io  of luminosi ty 
of the semi- in f in i te  med ium to the product  ~T~. It is  a s sumed  in these  calculat ions that the boundary layer  
has an optical  density T* = 1. The pa t t e rn  of change in the t e m p e r a t u r e  of the boundary l aye r  is the same  
as in the preceding  problem,  i .e . ,  Eqs .  (15) and (16) are  valid for  the boundary layer .  The t e m p e r a t u r e  of 
the semi- inf in i te  med ium beyond the boundary l aye r  was a s sumed  constant and equal to To, and sca t t e r ing  
as i so t rop ic .  

q(0) 
q (%) 

qh(O), qh(TO) 
D 
rl ,  r2 

ql, q2 
R 

K 

TO 
T 
I 
# 
(Y 

T 

En 
T* 

R~ 

q*(0) 

q*(T*) 

q~ 

S 

NOTATION 

is the radiative flux impinging on the surface T = 0 on the layer  side; 

is the radiative flux impinging on the surface T = T O on the layer side; 

are the intr insic  radiative fluxes on the surfaces T = 0 and 'T = T O respectively; 

is the t ransmit t ing power of the layer; 
are the ref lec t iv i t ies  of the surfaces T = 0 and T = T O respectively; 

are  the fluxes of intr insic  radiation of the surfaces T = 0 and T = T O respectively; 

is the reflecting power of the layer; 

ts the 
is the 
is the 
is the 
~s the 
is the 
~s the 
Ls the 
is the 
is the 
is the 
is the 
is the 
T = 0 ;  
iS the 
is  the 
is the 
is the 

ra t io  of the sca t t e r ing  coefficient  to the at tenuation coefficient; 
at tenuation coefficient;  
optical  th ickness  of the layer ;  
optical  depth; 
intensi ty of the radia t ion  in tegra ted  ove r  the az imuthal  angle; 
cosine of the angle between the axis and the d i rec t ion of the radiation; 
S t e f a n - B o l t z m a n n  constant; 
absolute t e m p e r a t u r e ;  
in tegra l  n th -o rde r  exponential  function; 
optical  th ickness  of the boundary layer;  
re f lec t ing  power of the semi- in f in i te  medium; 
flux of in t r ins ic  radia t ion f rom the i so the rma l  semi- inf in i te  medium; 
flux of in t r ins ic  radia t ion f r o m  the boundary l aye r  on the boundary of the med ium 

flux of in t r ins ic  radiation from the boundary layer  on the boundary T = T*; 

flux Of intr insic  radiation of the semi-inftni te  medium; 

emissivity factor of the layer; 
surface area. 

i. 

2o 

3. 
4. 
5. 
6. 
7. 

8. 
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